
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 7: Arrays

2Copyright 2006 by Pearson Education

Lecture outline

� array traversal algorithms

� printing an array's elements

� searching and reversing an array

3Copyright 2006 by Pearson Education

Why are arrays useful?
� Storing a large amount of data

� Example: Read a file of numbers and print them in reverse order.

� Grouping related data

� Example: Tallying exam scores from 0 through 100.

� Accessing data multiple times, or in random order

� Example: Weather program.

4Copyright 2006 by Pearson Education

� Quick array initialization, general syntax:
<type> [] <name> = { <value>, <value>, ..., <value>};

� Example:

int[] numbers = {12, 49, -2, 26, 5, 17, -6};

� Useful when you know what the array's element values will be.

� The compiler figures out the size by counting the values.

Array initialization statement

-617526-24912value

6543210index

5Copyright 2006 by Pearson Education

Array practice problem
� What element values are stored in the following array?

int[] a = {2, 5, 1, 6, 14, 7, 9};

for (int i = 1; i < a.length; i++) {

a[i] += a[i - 1];

}

value

6543210index

44352814872value

6543210index

6Copyright 2006 by Pearson Education

Array practice problem
� What element values are stored in the following array?

int[] a = {2, 5, 1, 6, 14, 7, 9};

for (int i = a.length - 1; i >= 1; i--) {

if (a[i] > a[i - 1]) {

a[i - 1] = a[i - 1] * 2;

}

}

value

6543210index

9141412254value

6543210index

7Copyright 2006 by Pearson Education

The Arrays class
� The Arrays class in package java.util has several

useful static methods for manipulating arrays:

arranges the elements in the array
into ascending order

sort(array)

returns a string representing the
array, such as "[10, 30, 17]"

toString(array)

sets every element in the array to
have the given value

fill(array, value)

returns true if the two arrays contain

the same elements in the same order

equals(array1, array2)

returns the index of the given value
in a sorted array (< 0 if not found)

binarySearch(array, value)

DescriptionMethod name

8Copyright 2006 by Pearson Education

Arrays.toString
� Arrays.toString accepts an array as a parameter and

returns its data as a String , which you can print.

� Example:

int[] a = {2, 5, 1, 6, 14, 7, 9};

for (int i = 1; i < a.length; i++) {

a[i] += a[i - 1];

}

System.out.println("a is " + Arrays.toString(a));

Output:

a is [2, 7, 8, 14, 28, 35, 44]

9Copyright 2006 by Pearson Education

Traversal algorithms,Traversal algorithms,

text processing,text processing,
type type charchar

reading: 7.1, 7.2, 4.4

10Copyright 2006 by Pearson Education

Array traversal
� traversal: An examination of each element of an array.

� Traversal algorithms often take the following form:

for (int i = 0; i < <array>.length; i++) {

do something with <array> [i] ;

}

� Examples:

� printing the elements

� searching for a specific value

� rearranging the elements

� computing the sum, product, etc.

11Copyright 2006 by Pearson Education

Examining array elements
� Example (find the largest even integer in an array):

int[] list = {4, 1, 2, 7, 6, 3, 2, 4, 0, 9};

int largestEven = 0;

for (int i = 0; i < list.length; i++) {

if (list[i] % 2 == 0 && list[i] > largestEven) {

largestEven = list[i];

}

}

System.out.println("Largest even: " + largestEven);

Output:

Largest even: 6

12Copyright 2006 by Pearson Education

Strings and arrays
� String s are represented internally as arrays.

� Each character is stored as a value of primitive type char .

� Strings use 0-based indexes, like arrays.

� We can write algorithms to traverse strings.

� Example:

String str = "Ali G.";

'.''G'' ''i''l''A'value

543210index

13Copyright 2006 by Pearson Education

Type char
� char : A primitive type representing a single character.

� Literal char values are surrounded with apostrophe marks:
'a' or '4' or '\n' or '\''

� You can have variables, parameters, returns of type char

char letter = 'S';
System.out.println(letter); // S

� You can compare char values with relational operators:

� 'a' < 'b' and 'Q' != 'q'

� You cannot use these operators on a String or any other object.

� An example that prints the alphabet:

for (char c = 'a'; c <= 'z'; c++) {

System.out.print(c);

}

14Copyright 2006 by Pearson Education

The charAt method
� Access a string's characters with its charAt method.

String word = console.next();
char firstLetter = word.charAt(0) ;
if (firstLetter == 'c') {

System.out.println("That's good enough for me!");
}

� We can use for loops to examine each character.

String name = "tall";
for (int i = 0; i < name.length(); i++) {

System.out.println(name.charAt(i));
}

Output:
t
a
l
l

15Copyright 2006 by Pearson Education

char vs. int
� All char values are assigned numbers internally by the

computer, called ASCII values.

� Examples:

'A' is 65, 'B' is 66, 'a' is 97, 'b' is 98

� Mixing char and int causes automatic conversion to int .

'a' + 10 is 107, 'A' + 'A' is 130

� To convert an integer into the equivalent character, type cast it.

(char) ('a' + 2) is 'c'

16Copyright 2006 by Pearson Education

char vs. String
� 'h' is a char

char c = 'h';

� char values are primitive; you cannot call methods on them;

can't say c.length() or c.toUpperCase()

� "h" is a String
String s = "h";

� Strings are objects; they contain methods that can be called

� can say s.length() 1

� can say s.toUpperCase() "H"

� can say s.charAt(0) 'h'

� What is s + s ? What is c + c ?

� What is s + 1 ? What is c + 1 ?

17Copyright 2006 by Pearson Education

Text processing
� text processing: Examining, editing, formatting text.

� Often involves for loops that examine the characters of a string

� Use charAt to search for or count a particular value in a string.

// Returns the count of occurrences of c in s.
public static int count(String s, char c) {

int count = 0;
for (int i = 0; i < s.length(); i++) {

if (s.charAt(i) == c) {
count++;

}
}
return count;

}

� count("mississippi", 'i') returns 4

18Copyright 2006 by Pearson Education

Text processing example
// string stores votes: (R)epub., (D)emo., (I)ndep.
String votes = "RDRDRRIDRRRDDDDIRRRDRRRDIDIDDRDDRRD RDIDD";

int[] counts = new int[3]; // R -> 0, D -> 1, I -> 2

for (int i = 0; i < votes.length(); i++) {
char c = votes.charAt(i) ;
if (c == 'R') { // put vote in proper box

counts[0]++;
} else if (c == 'D') {

counts[1]++;
} else { // c == 'I'

counts[2]++;
}

}
System.out.println(Arrays.toString(counts));

Output:
[17, 18, 5]

19Copyright 2006 by Pearson Education

Section attendance problem
� Consider an input file of course attendance data:

111111101011111101001110110110110001110010100

111011111010100110101110101010101110101101010

110101011011011011110110101011010111011010101

� Each line represents a section (5 students, 9 weeks).

� 1 means the student attended; 0 not.

week1 week2 week3 week4 week5 week6 week7 week8 wee k9
11111 11010 11111 10100 11101 10110 11000 11100 101 00

week2
student1 student2 student3 student4 student5
1 1 0 1 0

20Copyright 2006 by Pearson Education

Array transformations
� In this problem we convert data from one form to another.

� This is called transforming the data.

� Often each transformation is stored into its own array.

� We must map between the data and array indexes.

Examples:

� tally (if input value is i, store it at array index i)

� by position (store the i th value we read at index i)

� explicit mapping (count 'R' at index 0, count 'D' at index 1)

21Copyright 2006 by Pearson Education

Section attendance problem
� Write a program that reads the preceding section data

file and produces the following output:

Section #1:
Sections attended: [9, 6, 7, 4, 3]
Student scores: [20, 18, 20, 12, 9]
Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Section #2:
Sections attended: [6, 7, 5, 6, 4]
Student scores: [18, 20, 15, 18, 12]
Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Section #3:
Sections attended: [5, 6, 5, 7, 6]
Student scores: [15, 18, 15, 20, 18]
Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

22Copyright 2006 by Pearson Education

Section attendance solution
// This program reads a file representing which stu dents attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileN otFoundException {

Scanner input = new Scanner(new File("sections.txt"));
int section = 0; // used to count sections

while (input.hasNextLine()) {
String line = input.nextLine(); // one section's data
section++;
System.out.println("Section #" + section + ":");

int[] attended = new int[5]; // count sections attended
for (int i = 0; i < line.length(); i++) {

char c = line.charAt(i);
if (c == '1') { // student attended section

attended[i % 5]++;
}

}
System.out.println("Sections attended: " + Arrays.to String(attended));

...

23Copyright 2006 by Pearson Education

Section attendance solution 2
...

// compute section score out of 20 points
int[] scores = new int[5];
for (int i = 0; i < scores.length; i++) {

scores[i] = Math.min(3 * attended[i], 20);
}
System.out.println("Student scores: " + Arrays.toStr ing(scores));

// compute section grade out of 100%
double[] grades = new double[5];
for (int i = 0; i < scores.length; i++) {

grades[i] = 100.0 * scores[i] / 20;
}
System.out.println("Student grades: " + Arrays.toStr ing(grades));
System.out.println();

}
}

}

� The program can be improved:
� It doesn't have any static methods.

� To add methods, we'll need to pass arrays as parameters.
(seen next time)

24Copyright 2006 by Pearson Education

Text processing questions
� Write a method named pigLatin that accepts a String

as a parameter and returns that word in simple Pig
Latin, placing the word's first letter and ay at the end.

� pigLatin("hello") returns ello-hay

� pigLatin("goodbye") returns oodbye-gay

� Write methods named encode and decode that accept a
String as a parameter and return that String with

each of its letters increased or decreased by 1.

� encode("hello") returns ifmmp

� decode("ifmmp") returns hello

